jueves, 17 de octubre de 2013

Grupo - 3: LAS CITOQUINAS



LAS CITOQUINAS

Las citoquinas (o citocinas) son un grupo de proteínas de bajo peso molecular que actúan mediando interacciones complejas entre células de linfoides, células inflamatorias y células hematopoyéticas.

Sus funciones son muy variadas, pero se pueden clasificar en unas pocas categorías:

·        diferenciación y maduración de células del sistema inmunitario;

·        comunicación entre células del sistema inmunitario;

·        en algunos casos, ejercen funciones efectoras directas.

En el pasado reciente hubo un cierto galimatías con la cuestión de su denominación. Así, muchas de las primeras citoquinas se descubrieron como señalizadoras entre leucocitos, por lo que se denominaron interleuquinas; otras eran secretadas por monocitos/macrófagos, por lo que se llamaron monoquinas. Sin embargo, muchas de esas sustancias son producidas por otros tipos celulares, por lo que se desaconseja el uso de esas denominaciones, para agruparlas a todas bajo el concepto de citoquinas. Las quimioquinas (o quimiocinas) son un tipo de citoquinas de pequeño tamaño, con papeles en la respuesta inflamatoria y la quimiotaxis de fagocitos.



PROPIEDADES GENERALES DE LAS CITOQUINAS

Las citoquinas son un grupo de proteínas secretadas de bajo peso molecular (por lo general menos de 30 kDa), producidas durante las respuestas inmunes natural y específica. Se unen a receptores específicos de la membrana de las células donde van a ejercer su función, iniciando una cascada de transducción intracelular de señal que altera el patrón de expresión génica, de modo que esas células diana producen una determinada respuesta biológica.



Las citoquinas son proteínas o glucoproteínas de menos de 30 kDa. Muchas de ellas pertenecen a la llamada familia de las hematopoyetinas, y tienen estructuras terciarias parecidas: una configuración a base de un conjunto de cuatro hélices a , con poca estructura en lámina b .

Generalmente actúan como mensajeros intercelulares que suelen intervenir en la maduración y amplificación de la respuesta inmune, provocando múltiples actividades biológicas una vez que se unen a los receptores específicos de las células diana adecuadas.

Aunque existen muchos tipos de células productoras citoquinas (ya hemos ido viendo unas cuantas en los temas anteriores), los más importantes son los linfocitos TH y los macrófagos, ya que sus citoquinas son esenciales para que se produzca la respuesta inmune una vez que se activan las células T y B por el contacto con las correspondientes células presentadoras de antígeno.
Principales tipos de respuesta mediatizados por la acción de las citoquinas:
1.   activación de los mecanismos de inmunidad natural:

a.   activación de los macrófagos y otros fagocitos
b.   activación de las células NK
c.   activación de los eosinófilos
2.   inducción de las proteínas de fase aguda en el hígado.
3.   Activación y proliferación de células B, hasta su diferenciación a células plasmáticas secretoras de anticuerpos.
4.   Intervención en la respuesta celular específica.
5.   Intervención en la reacción de inflamación, tanto aguda como crónica.
6.   Control de los procesos hematopoyéticos de la médula ósea.
7.   Inducción de la curación de las heridas.
La mayor parte de los receptores de citoquinas del sistema inmune pertenecen a la familia de clase I (de receptores de hematopoyetinas). Todos sus miembros tienen en común poseer una proteína anclada a membrana, con un dominio extracelular en el que hay al menos un motivo característico llamado CCCC (cuatro cisteínas cercanas en posiciones equivalentes) y el llamado motivo WSXWS (Trp-Ser-X-Trp-Ser). (Adicionalmente, algunos miembros poseen dominios de tipo Ig y/o dominios de tipo fibronectina). Tras su porción transmembrana se encuentra una larga cola citoplásmica con ciertas tirosinas susceptibles de fosforilación.




TRANSDUCCIÓN DE SEÑAL


Recientemente se han producido avances importantes en el desentrañamiento de la ruta que conduce desde la unión de la citoquina con el receptor de la célula diana hasta la activación de la transcripción de los genes cuyos productos son responsables de los efectos de dichas citoquinas. He aquí un modelo general que se puede aplicar a muchos receptores de las clases I y II:

1.   La citoquina provoca la dimerización de las dos subunidades del receptor (cadenas a y b), lo que coloca cercanas a sus respectivas colas citoplásmicas.

2.   Una serie de proteín-quinasas de la familia de JAK (quinasas Jano) se unen a las colas agrupadas de las subunidades del receptor, con lo que se esas quinasas se activan.

3.   Las JAK se autofosforilan.
4.   Las JAK fosforilan a su vez determinadas tirosinas de las colas del receptor,
5.   Entonces proteínas de otra familia, llamada STAT (iniciales inglesas de transductores de señal y activadores de transcripción) se unen a algunas de las tirosinas fosforiladas de las colas del receptor, quedando cerca de las JAK.

6.   Las JAK fosforilan a las STAT unidas a las colas del receptor.
7.   Al quedar fosforiladas, las STAT pierden su afinidad por las colas del receptor, y en cambio tienden a formar dímeros entre sí. (Las tirosinas fosforiladas que han quedado libres en las colas del receptor sirven para unir nuevos monómeros de STATs).

8.   Los dímeros de STAT fosforilados emigran al núcleo de la célula, donde actúan ahora como activadores de la transcripción de ciertos genes, al unirse a secuencias especiales en la parte 5’ respecto de las respectivas porciones codificadoras.

La actividad biológica de las citoquinas está regulada fisiológicamente por dos tipos de antagonistas:
·        los que provocan el bloqueo del receptor al unirse a éste:

los que inhiben la acción de la citoquina al unirse a ésta.

Como ejemplo de bloqueador de receptor tenemos el antagonista del receptor de IL-1 (IL-1Ra), que bloquea la unión de IL-1a o IL-1b . Desempeña un papel en la regulación de la intensidad de la respuesta inflamatoria. En la actualidad se está investigando su potencial clínico en el tratamiento de enfermedades que cursan con inflamación crónica.

Algunos virus han evolucionado (como parte de sus mecanismos de evasión del sistema defensivo del hospedador) para producir proteínas que se unen e inactivan a las citoquinas.


En este apartado no vamos más que a recordar y profundizar un poco más en algo ya tratado en el contexto del tema 13: cómo el distinto espectro de citoquinas secretadas por las dos subpoblaciones de linfocitos TH determina distintos efectos biológicos, y cómo cada subpoblación controla a la otra.

Las células TH1 producen IL-2, IFN-g y TNF-b . Son responsables de funciones de inmunidad celular (activación de linfocitos TC e hipersensibilidad de tipo retardado), destinadas a responder a parásitos intracelulares (virus, protozoos, algunas bacterias).

Las células TH2 producen IL-4, IL-5, IL-10 e IL-13. Actúan como colaboradoras en la activación de las células B, y son más apropiadas para responder a bacterias extracelulares y a helmintos. También están implicadas en reacciones alérgicas (ya que la IL-4 activa la producción de IgE y la IL-5 activa a los eosinófilos).

Este fenómeno de regulación negativa cruzada explica las ya antiguas observaciones de que existe una relación inversa entre la producción de anticuerpos y la hipersensibilidad de tipo retardado.

Obsérvese que los macrófagos y otras células presentadoras de antígeno también producen citoquinas (como la IL-12, descubierta hace relativamente poco tiempo) que regulan a su vez funciones inmunes efectoras. La IL-12 se produce en macrófagos activados en respuesta a infecciones bacterianas o de protozoos. Esta citoquina provoca la proliferación de células NK y TH1,que aumentan la producción de IFN-g . Este interferón inmune ayuda en la mayor activación de macrófagos. De esta forma se cierra este circuito de retrorregulación positiva entre macrófagos y TH1, destinado a potenciar funciones efectoras de la rama celular de la inmunidad.

Por otro lado, los macrófagos se ven inhibidos por IL-4 e IL-10 secretadas por los TH2 (de nuevo una manifestación de la inhibición cruzada entre la rama especializada en la respuesta humoral y la centrada en la respuesta celular ante parásitos intracelulares).

Otro aspecto que va quedando claro igualmente es que la predominancia de una u otra de las dos subpoblaciones de linfocitos Tdepende a su vez del microambiente de citoquinas en que ocurriera la activación y maduración inicial a partir de linfocitos en reposo: por ejemplo, in vitro se ha visto que si un TH se activa por antígeno en presencia de IL-4, se desarrolla hasta TH2, mientras que si el entorno de activación es rico en IFN-g , se desarrolla hasta TH1.


No hay comentarios.:

Publicar un comentario